
TransMap: Pinpointing Mistakes in Neural Code Translation
Bo Wang

bo_wang@u.nus.edu
National University of Singapore

Singapore, Singapore

Ruishi Li
liruishi@u.nus.edu

National University of Singapore
Singapore, Singapore

Mingkai Li
t0927617@u.nus.edu

National University of Singapore
Singapore, Singapore

Prateek Saxena
prateeks@comp.nus.edu.sg

National University of Singapore
Singapore, Singapore

ABSTRACT
Automated code translation between programming languages can
greatly reduce the human effort needed in learning new languages
or in migrating code. Recent neural machine translation models,
such as Codex, have been shown to be effective on many code
generation tasks including translation. However, code produced by
neural translators often has semantic mistakes. These mistakes are
difficult to eliminate from the neural translator itself because the
translator is a black box, which is difficult to interpret or control
compared to rule-based transpilers. We propose the first automated
approach to pinpoint semantic mistakes in code obtained after neu-
ral code translation. Our techniques are implemented in a prototype
tool called TransMap which translates Python to JavaScript, both
of which are popular scripting languages. On our created micro-
benchmarks of Python programs with 648 semantic mistakes in
total, TransMap accurately pinpoints the correct location for a fix
for 87.96%, often highlighting 1-2 lines for the user to inspect per
mistake. We report on our experience in translating 5 Python li-
braries with up to 1𝑘 lines of code with TransMap. Our preliminary
user study suggests that TransMap can reduce the time for fixing
semantic mistakes by around 70% compared to using a standard
IDE with debuggers.

CCS CONCEPTS
• Computing methodologies→Machine translation; • Soft-
ware and its engineering→ Imperative languages.

KEYWORDS
Code Translation, Large Language Models, Semantic Mistakes

ACM Reference Format:
Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena. 2023. TransMap:
Pinpointing Mistakes in Neural Code Translation. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’23), December 3–9,
2023, San Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3611643.3616322

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San Francisco,
CA, USA, https://doi.org/10.1145/3611643.3616322.

1 INTRODUCTION
Automated code translation is the process of transforming code
from one programming language to another. Such techniques can
help developers express ideas in one language syntax and then
easily transfer them to other languages without the encumbrance
of learning a new language syntax. Automatic code translation can
also lower the cost of migrating code bases from a legacy language
to a modern language [22] or from one platform to another [1].

A new approach to programmigration or translation has become
possible based on neural network models [43, 46, 55]. These tech-
niques were originally developed for natural language generation
tasks [6, 30, 42] but also showed promising results in code-related
tasks. For example, a state-of-the-art neural code generator Codex
[9] is fine-tuned on a popular language model [30] and it backs
the AI pair programmer Copilot [20] in Visual Studio Code. It is
a general-purpose generative model trained on billions of lines
of code from public repositories. It has recently been utilized for
translating code between programming languages [4].

Neural code translation offers a promising approach for mostly
automatic code translation. These translators are trained in an un-
supervised manner from examples on a large corpus, saving manual
effort in devising translation rules. The translated code is often
natural-looking, unlike compiler-generated code. This is because
neural code translators can capture the conventions seen in lots of
training data derived from real code. Furthermore, state-of-the-art
neural translators are derived from large natural language models
and can take into account natural language hints like comments or
variable naming conventions during translation.

In this work, our goal is to improve neural code translation
for code written in scripting languages. We specifically target the
translation of Python programs to JavaScript. Both these languages
are popular and have many similarities being statically untyped,
and therefore we believe offer a concrete starting point.

However, neural code translators can introduce errors in gener-
ated code. Prior work has observed that code produced from neural
code generators can have syntax mistakes, operator precedence
errors, misuse of APIs, incorrect data types, and so on [23, 43]. Mis-
takes are either syntactic or semantic. Syntactic mistakes violate the
target language syntax and can be easily detected by syntax check-
ers. Semantic mistakes, on the other hand, can result in code that
does not execute or executes but outputs wrong values. For many
of these, a fix location is also not immediately visible from running

https://orcid.org/0000-0003-1444-0237
https://orcid.org/0000-0003-2513-1704
https://orcid.org/0009-0007-3191-0890
https://orcid.org/0000-0002-1875-8675
https://doi.org/10.1145/3611643.3616322
https://doi.org/10.1145/3611643.3616322
https://doi.org/10.1145/3611643.3616322


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

Figure 1: An example of translated code from a neural code generator. The code contains 3 translation mistakes: two semantic
mistakes and one syntax mistake. The gray and white shading is the visualization of the source map generated by TransMap.

tests or syntax checkers. We call such mistakes hidden. In micro-
benchmarks discussed later in Section 6, 84.93% of all mistakes are
semantic, and more than half of these are hidden mistakes.

In this paper, we therefore focus on the problem of automatically
pinpointing hiddenmistakes in the translated code. Given the source
code, its translated code that contains semantic mistakes, and error-
triggering tests, the goal is to automatically find the positions in the
translated code where small modifications are sufficient to produce
translated code that passes the tests. These pinpointed locations
serve as an aid to human programmers: They can focus on 1-2
lines of code to fix, instead of the whole input program. While we
believe our techniques can be combined with upstream tasks such
as automated repair or test generation, we consider these analyses
as orthogonal and retain the human developer in the translation
loop, keeping with the notion that "the user knows best".

The challenge in pinpointing hidden mistakes when working
with neural code generators is that their behaviour is difficult to
interpret or explain. Access to state-of-the-art models is often black-
box, and even with white-box access, neural networks with billions
of parameters are challenging to analyze. Several mechanisms de-
vised in the context of natural language translation tasks, from
which neural code translators are derived, do not necessarily lend
actionable insights for code translation tasks. For example, the neu-
ral attention mechanism can identify which part of the input code
the model concentrates on to produce an output snippet [49], but
this signal is too noisy and does not explain where the errors are
introduced if they are. Furthermore, little modification in the source
code or the decoding algorithms [58] of a modern neural generator
like Codex can result in unpredictable changes in the translated
code, making the process of pinpointing mistakes ad-hoc.

A key technical difficulty in pinpointing translation mistakes
is that we have tests that run on two different programs, one
written in the source language and the other in the target. This
setup is unlike that in fault localization [5, 26, 28, 41, 44, 59] or

repair [17, 18, 21, 34, 57] which works with the same program.
Therefore, we propose to reconstruct a line-to-line mapping be-
tween the source and target program, analogous to "source maps"
produced by traditional compilers. Such mappings allow us to com-
pare execution traces run on the source and target programs and
narrow down locations to focus on. Our solution requires only
black-box access to the neural code generator and avoids making
many computationally expensive queries to it. This makes the ap-
proach compatible with updates in code generators and lightweight.
It also avoids manually writing hard-coded rules for specific types
of translation mistakes, heavy-weight analyses, or formal language
semantics. Our techniques are embodied in a prototype tool called
TransMap, which is short for Translation with sourceMap.

We create a micro-benchmark for quantitative evaluation, de-
rived from 3 sources of real Python programs: LeetCode [15], Hu-
manEvalX [10], and GeeksForGeeks benchmarks [43]. Each bench-
mark contains Python source code, translated JavaScript code ob-
tained from querying Codex, passing/failing tests, and manually
determined fixes to all the translation mistakes sufficient to pass
the tests. There are 648 identified semantic mistakes with manually
validated fixes in total. We evaluate TransMap on our quantitative
benchmarks and it can successfully pinpoint 87.96% of all the 648
semantic mistakes and 84.44% of all the hidden mistakes. The final
reported position ranges by TransMap have an average length of
1.23 lines, which highlights that the developer only needs to focus
their attention on a very small range of the code to devise a fix.

We conduct a preliminary user study to use TransMap for de-
bugging code translations with different lengths (10-200 lines) and
find that TransMap can save around 70% of the time for fixing the
code compared to using an industry-standard IDE (VS Code [32])
with Python and JavaScript debuggers. Furthermore, we report on
a qualitative experience by authors in using TransMap to translate
5 larger Python libraries of about 120 to 1𝑘 lines of code.



TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2 PROBLEM OVERVIEW
We begin by showing an example for which Codex, a state-of-the-
art neural generator, produces a useful initial Python to JavaScript
translation. It has several mistakes, the locations of which are not
straightforward to pinpoint by just running the given tests and ob-
serving the runtime errors. This motivates the need for TransMap.

2.1 Motivating Example
The left part of Figure 1 is an executable Python code that has
one function with a list as the input and returns an integer. The
right part is the JavaScript code translated from the Python code
by Codex. There are some complex tasks during the translation but
Codex manages to correctly translate them. Firstly, the Python code
creates a defaultdict -typed1 dictionary and uses it on line 5, line
7, and line 10. As JavaScript does not have the equivalent built-in
data type, Codex translates the defaultdict data type in Python
to the Object data type with a key-existence check before access,
e.g., at lines 7-9 in JavaScript. This type of check is correctly omitted
in Codex output when the key is present in the dictionary, e.g., at
lines 15-16. Secondly, the Python code has a list comprehension on
line 10, which does not natively exist in JavaScript. Codex translates
the list comprehension into statements with the same semantics: a
for loop in JavaScript at lines 14-17. Thirdly, Python APIs, such as
len(arr) , sum(..) , and data type operations, such as arr[-1] ,
are correctly translated into arr.length , arr.reduce(...) , and
arr[arr.length - 1] in JavaScript.

While Codex translates most parts of the code correctly, the full
translated code is not syntactically correct—a syntax checker can
discover a syntax mistake on line 23. Even if the syntax mistake
is fixed, the translated code still outputs different results from the
source under the same test cases. A careful reader will notice that
there are at least two other semantic mistakes, for which small
modifications to the JavaScript code are sufficient to make it correct.
The 3 mistakes highlighted in Figure 1 are as follows:
• Syntactic Mistake 1: the if-else to encode a ternary expres-
sion violates JavaScript syntax on line 23. The correct translation
is return max_conn==-1 ? -1 : avg_conn-max_conn; .
• Semantic Mistake 1: the arr.sort() has different seman-
tics in Python and JavaScript. The corresponding Python code
arr.sort() on line 11 sorts arr in ascending numerical order
whereas line 18 of JavaScript sorts elements alphabetically as
strings. For example, the sort of an array [2, 11, 5] will re-
turn [2, 5, 11] after executing line 10 of the Python code and
[11, 2, 5] after executing line 18 of the JavaScript code. The
correct translated code should be arr.sort((a,b)=> a-b); .
• SemanticMistake 2: the / operation in Javascript has a different
meaning with // operation in Python. Line 15 of Python code
means integer division, e.g., 12//5 = 2 but line 21 of JavaScript
code is floating point division, e.g., 12/5 = 2.4 . The correct
translated code should be avg_conn = Math.floor(../..); .
Figure 2 briefly summarizes our evaluation on more benchmarks

presented later in Secion 6.1. We find that 84.93% of all mistakes
are semantic among which more than half are hidden mistakes.
For such mistakes, running the program either throws no runtime

1It provides a default value for non-existing keys, instead of raising errors.

Figure 2: Distribution of translation mistakes in our micro-
benchmarks presented later in Section 6.1.

errors but produces wrong output values, or it throws runtime
errors but the error locations are not where the right fix is needed.

2.2 Problem Setup and Challenges
In our setup, we are given the source and target programs gener-
ated from the black-box neural generator, together with unit tests.
It is straightforward to translate test inputs and outputs across
languages; therefore, assume the availability of such tests. Tests
under which the outputs of the source and target programs are the
same are deemed as passing, whereas those on which they differ are
deemed as failing. Our goal is to pinpoint locations in the translated
code where fixes are sufficient to have all given test cases pass.

Black-box neural code generators are neither explainable nor
stable to input perturbations. Unlike compilers of which the behav-
iors can be explained in deterministic transpilation rules, neural
code generators can introduce unpredictable changes in the output
on small changes in input. For instance, Codex can produce totally
different results and mistakes for the same input even with small
changes in its auxiliary inputs, such as in sampling methods or
sampling temperatures. Expressing the behavior of the generator
in deterministic rules for further analysis is difficult.

Another challenge comes from the complexity of the context-
dependent semantics of statements in the program. For example, in
untyped languages such as Python and JavaScript, the semantics of a
statement may depend on types and possible value ranges of related
variables, and how a piece of code should be translated would also
depend on the earlier translation of related variables. For example,
while line 7 of Python (g[u - 1].append(...) ) is semantically
equivalent to lines 7-10 in JavaScript, such equivalence is under the
context that g ’s data type is mapped from defaultdict (Python)
to Object (JavaScript), and the value of u in JavaScript is equal
to u - 1 in Python due to the translation at line 4. If g were
a dict in Python and u were translated to represent the same
value, g[u-1].append(...) in Python would be equivalent to
g[u-1].push(...) in JavaScript instead of lines 7-10. One possible
solution to this challenge is to model shared semantics across the
two languages with context awareness. But, such specifications are
labor-intensive and change as the concerned languages evolve.

In this paper, we aim to provide an automatic and lightweight
procedure to pinpoint semantic mistakes in neural code translation
that is largely agnostic to the internals of the neural generator.
The fewer the pinpointed locations, the better—we hope the user’s
attention can be drawn to as few locations to fix as possible.

Our solution works on the following key principle: Rather than
trying to reconstruct externally why the generator produces a cer-
tain output, we simply ask the neural code generator to explain
itself, i.e., to produce a mapping between the source code and its



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

Figure 3:Workflow of TransMap to pinpoint and fix the trans-
lation mistakes. TransMap has two key components: the neu-
ral source map generator and the trace comparator.

own translated code in a format we designed. We show that such
mapping, coupled with an execution trace comparison technique,
can automatically pinpoint mistakes with high fidelity.

3 TRANSMAP: OVERVIEW
Figure 3 shows theworkflow ofTransMap that works in a loopwith
a user to pinpoint and fix the translation mistakes. The translated
code is pre-translated by the neural code generator from the source
and they form a code pair. ① The code pair is given as input to our
neural source map generator to generate its source map. Given the
code pair, its source map, and the unit tests of the source and the
translated code, the trace comparator reports the location of the
first semantic mistake in the translated code to the user. ② The user
fixes the translated code based on the mistake report of TransMap.
If the fixed code does not pass the unit tests, it means that the
translation has other semantic mistakes. Thus, the translated code
would be updated (③) and the next iteration of this process would
start from ① to pinpoint the next mistake. The process stops when
the translated code has no mistakes remaining, i.e., all tests pass.

Source Map Generation. The first component in TransMap gen-
erates the source map, a line-to-line mapping between the given
source and translated code pair. Source map creation is standard
in compiler-based translators [33, 51], but it has not been demon-
strated for neural code translation yet, to the best of our knowledge.
Our main insight to solving this challenge is that we can ask the
neural code generator to explain itself. We propose a pre-designed
prompt to guide the neural code generator to output the mapping.
Our observation stems from the in-context learning capability of
many modern large transformer-based generative models [6, 7, 45],
which allows the model to learn a new task from only a few ex-
amples provided as “prompts”[6]. We call them prompt examples.
In-context learning does not need to change the generative model
and only requires black-box access to it. For our source mapping
task, the in-context learning prompt starts with a fixed prompt
example of the mapping task that we designed, followed by the
pair of programs (𝑆,𝑇 ) for which we want to create a source map.
Our fixed prompt example has a hard-coded pair of source and
target programs and the corresponding source map between them

Figure 4: One-shot in-context learning prompt template (part
A and B) for source map generation and its output (part C).

created manually. This example essentially illustrates or “teaches”
the model how to create a source map. When we provide this fixed
prompt example, together with the programs given as input to
TransMap (𝑆,𝑇 ) to the neural code generator, it mimics the task
demonstrated in the fixed prompt example on (𝑆,𝑇 ). Figure 4 briefly
shows the prompt template and Section 4.1 details the mechanism.

One may naturally ask why does this approach to source map
generation work. The explanation stems from why in-context learn-
ing works [60]: in-context learning succeeds when the neural net-
work model is able to infer some shared latent concepts in the



TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

provided prompt examples. The latent concept learnt for transla-
tion is the mapping between semantically similar statements in
the two languages. Such latent concepts, if learnt for translation,
should also be able to provide source line maps. The fixed prompt
example teaches the model how to explicitly represent it in outputs.

When designing the prompt, computational costs become a bot-
tleneck. While in-context learning works better with more prompt
examples, the computational cost of the attention mechanism in
modern transformer-based neural code generators increases non-
linearly with prompt length. The model takes longer to translate
longer inputs and therefore, the model query interface limits the
number of lexical tokens. For example, Codex can only process 8𝑘
tokens per query at most for the prompt plus the generated text.
To reduce the length of the prompt and save more tokens for the
generated source map, we only use one fixed prompt example.

With a single prompt example, we cannot “teach” very complex
tasks to neural code generators since their limited reasoning and
arithmetic computation capability come into play [14]. Thus, even
though our prompt example is short, it is empirically selected to
minimize ambiguity in the source mapping task—it only requires
the neural code generator to copy existing code and annotations to
show the line correspondence, without generating any new code
or performing complex arithmetic computations. Additionally, we
also set the sampling temperature to 0 since the task requires no
creativity [36]. With these design choices, we empirically observe
that the noise in the generated source maps is quite low, as shown
in Section 6.2. Figure 1 visualizes the source map automatically
generated using our approach with white and gray shading.

Trace Comparison. After we get the source map, the next step
in TransMap is to execute the source and target programs with
the given test inputs, which results in execution traces. TransMap
compares these execution traces to pinpoint a location where the
execution states, i.e., values of traced program variables, differ. A
simplistic approach to trace comparisonwould be to trace the source
and translated program statement by statement. This approach
leads to a large amount of trace data. Furthermore, the intermediate
states at each individual statement in a larger block of statements
can turn out to be different between the source and target traces,
while still producing the same output at the end of the block. As an
example, after line 14 in JavaScript, the variable arr is bound to an
empty array, but arr is never empty in Python. However, the value
of arr is changed multiple times before line 17 where it finally has
the same value as in Python after line 10.

We can improve the above simplistic approach by using our
source map. The source map gives us (possibly noisy) line-to-line
mapping which is a natural segmentation in the programs to per-
form comparisons. Code segments which cannot be sub-divided
based on the source map are called atomic pieces. We can now record
and compare program states between corresponding atomic pieces
of the source and the translated code. However, this naive approach
can identify spurious locations to inspect.

To illustrate why, consider the translation example in Figure 1
again. Let us assume that the syntax error on line 23 has been fixed
by the user so that only semantic mistakes remain. If we trace per
atomic piece, we will insert a pair of tracepoints between line 6 and
line 7 in both Python and JavaSript. The Line 7 of the Python code

maps to lines 7-9 of the JavaScript code, but the program values
differ—variable u on the Python side is not equal to the variable
u on the JavaScript side, and that is because the translated code is
assigning times[i][0]-1 rather than times[i][0] to u . Thus,
the naive approach would report a trace discrepancy at lines 3-6 as
variables u and v have different values under almost all executions.
However, if we carefully inspect the behavior of the whole loop,
lines 3-6 are unnecessary to inspect and would waste user attention.
This is because lines 7-10 in the translated code consistently use u
instead of u-1 , so the values of local variables after the combined
code block (lines 3-10) produce the same result as the Python code.
Further, this approach creates large traces, as trace length grows
with algorithmic complexity of the code (e.g., with nested loops).

We propose a simple solution we call dynamic granularity tracing
to address this challenge. Dynamic granularity tracing compares
execution states at the boundaries where the semantics of the source
and the translated code reach an agreement, hoping to skip past
differences in intermediate states. The intuition is to mimic the
debugging process of a programmer to some extent where the
granularity of “breakpoints” is increased iteratively while we are
getting closer and closer to the exact position of the mistake. For
example, on the translation in Figure 1, the tracing starts with
statements in the function scope at first to trace the program at
lines 5, 6, 9, etc. of Python and 2, 3, 12, etc. of JavaScript. Notice
that it will not trace inside the first for loop but only compare
the program states before and after it. Thus, the trace comparator
concludes that the first for loop is correct and moves on to spot
mistake 1 at line 18. Once the user fixes that, it will report mistake
2 which is in a deeper block scope. The translation passes all tests
after mistake 2 is fixed by the user in our example.

4 TRANSMAP: COMPONENTS
Two main components of TransMap, the source map generator
and trace comparator, work together to pinpoint locations where
the user can focus their attention.

4.1 Source Map Generator
Given the source and the translated code (𝑆,𝑇 ) by the neural code
generator, the goal of the source map generator is to output a map-
ping between atomic pieces in the source and the translated code.
An atomic piece is a tuple (𝐴[ℓ𝑠 ], 𝐴[ℓ𝑡 ]), where𝐴[ℓ𝑠 ] and𝐴[ℓ𝑡 ] are
ordered lists of statements corresponding to the line number ℓ𝑠 in
the source program and ℓ𝑡 in the translated program, respectively.
The source map is an ordered list of atomic pieces.

As briefly explained, we use in-context learning with prompts
to the neural code generator for creating source maps. Figure 4
shows the prompt template that is used for all input programs.
Conceptually, this prompt can be divided into two parts. The first
part is a fixed pair of code fragments that is used to demonstrate
the task of creating source maps. Specifically, it has a fixed Python
code and its JavaScript equivalent with the source map annotations
in comments, as seen in Figure 4, part A. This is the “one-shot”
example of the task we want to teach the generator to perform [6].
Note that part A of the prompt does not change for different (𝑆,𝑇 ).

The second part of the prompt template consists of the given
Python source program 𝑆 and the given JavaScript translated code𝑇 ,



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

but without any source map annotations. The neural code generator
is expected to learn how to perform the task demonstrated by
part A of the prompt template and auto-complete it. The prompt
completion if successfully done, would copy the programs (𝑆,𝑇 )
and add annotations to them which serve as the source mapping.
The output section of Figure 4 shows the part completed by the
neural code generator. It can be seen that the model has added
code comments line-by-line to both the Python program 𝑆 and
JavaScript program 𝑇 provided to it in part B of the template. From
this output it is straightforward to parse the programs, create a list
of statements corresponding to each line number specified in the
comments, and obtain the source map.

In order to arrive at this specific prompt template, we performed
prompt engineering empirically of two kinds: prompt paraphras-
ing [25] and prompt scoring [13]. For prompt paraphrasing, we
mutated both the source mapping instruction (##### Match ... )
and the comments before statement numbers (--- py stmt ) to
create prompt variations to select from. They are highlighted in
green in Figure 4. We tried 32 variations only since each query to
the code generator incurs a cost.

We then compared prompt variations using prompt scoring[13].
We define the score of a prompt output as the log probability of
filling all the statement numbers correctly (red circles in Figure 4).
Specifically, let 𝐶𝑖 = 1 be the event that the 𝑖𝑡ℎ statement in the
output is correctly mapped (else 𝐶𝑖 = 0), then we are interested
in the event that all 𝐶𝑖 equal to 1. The score 𝐹 (𝑃,𝑋 ) for a prompt
variation 𝑃 on a specific source map example 𝑋 is computed as:

𝐹 (𝑃,𝑋 ) = log Pr
[(∏

𝑖
C𝑖

)
= 1

]
= log

∏
𝑖
Pr

[
C𝑖 = 1 |

(∏
𝑗<𝑖

C𝑗

)
= 1

]
(chain rule)

=
∑︁

𝑖
log Pr

[
C𝑖 = 1 |

(∏
𝑗<𝑖

C𝑗

)
= 1

]
=
∑︁

𝑖
token_logprob (𝑁𝑖 , full_correct_output )

The quantities in the last step are provided by the neural code
generator and𝑁𝑖 is the 𝑖𝑡ℎ statement number token. Multiple values
token_logprob(token, output) for the same output can be ob-
tained from a single query to Codex. We test each of the 32 prompt
variations on 10 distinct source map examples that we manually cre-
ated for validation. For each source map example, we obtain scores
for all prompt variations. For each example 𝑋𝑡 , we compute the
ranking of candidate 𝑃𝑘 as Rank(𝑃𝑘 , 𝑋𝑡 ) where higher 𝐹 (𝑃𝑘 , 𝑋𝑡 ) is
better. We choose the prompt with the highest average rank across
the 10 source map examples, computed as 1

10
∑10
𝑡=1 Rank(𝑃𝑘 , 𝑋𝑡 ).

4.2 Trace Comparator
Once we have the source map, the trace comparator instruments the
two given programs (𝑆,𝑇 ). It then runs the test cases on them and
compares their execution traces. For execution tracing, both pro-
grams (𝑆,𝑇 ) are instrumented with 2 kinds of logging: tracepoints
and line coverage. The tracepoint instrumentation logs program
states at the beginning statement of each atomic piece. The trace-
point is thus a 3-tuple (ℓ𝑠 , ℓ𝑡 , 𝑑), where ℓ𝑠 is the line number of the
first source statement of an atomic piece, ℓ𝑡 is the line number of
the first target statement of the same atomic piece, and 𝑑 is the

Algorithm 1 Dynamic Granularity Tracing Algorithm
1: procedure DynamicGranularityTracing(𝑃𝑡 , 𝑃𝑠 , 𝑀,𝑇 , L𝑚𝑎𝑥 )
2: L← 1 ⊲ L is the current tracing level
3: 𝑆𝑠 ← {1, 2, ...#Line(𝑃𝑠 )}, 𝑆𝑡 ← {1, 2, ...#Line(𝑃𝑡 )}
4: while L ≤ L𝑚𝑎𝑥 do
5: 𝑇 ′ = Filter(𝑇, 𝑥 → 𝑥 .𝑙 ≤ L ∧ 𝑥 .𝑠 ∈ 𝑆𝑠 ∧ 𝑥 .𝑡 ∈ 𝑆𝑡 )
6: (Γ𝑠 , Γ𝑡 ) ← RunCollectTrace(𝑃𝑡 , 𝑃𝑠 ,𝑇 ′)
7: 𝑘 ← FindDivergingStep(Γ𝑠 , Γ𝑡 )
8: if 𝑘 is None then
9: return ∅, ∅ ⊲ No divergence, code is correct
10: 𝐶𝑠 ← GetCoveredLinesInBetween(Γ𝑠 , 𝑘 − 1, 𝑘)
11: 𝐶𝑡 ← GetCoveredLinesInBetween(Γ𝑡 , 𝑘 − 1, 𝑘)
12: 𝐶′𝑡 ← MapSrcLinesToTgt(𝑀,𝐶𝑠 ),
13: 𝐶′𝑠 ← MapTgtLinesToSrc(𝑀,𝐶𝑡 ),
14: 𝑆𝑡 ← 𝐶𝑡 ∪𝐶′𝑡 , 𝑆𝑠 ← 𝐶𝑠 ∪𝐶′𝑠
15: L = L + 1 ⊲ Increase tracing level
16: return 𝑆𝑠 , 𝑆𝑡 ⊲ Suspicious lines (source and target)

level of the tracepoint. The level of the tracepoint is its lexical scope
depth and all local variables accessible in that scope are logged. For
example, line 7 in Python is at level 2 and line 3 is at the lowest
level 0 (global scope). For a tracepoint to be valid, the scope level
for the source statement and the target statement are expected to
be the same—if not, we do not trace those statements.

The instrumented logging statements before each tracepoint
record all local variables accessible in that scope and their values.
However, this is not sufficient to know the set of executed lines after
hitting one tracepoint and before hitting another. The executed lines
in between are not necessarily the code between two tracepoints
due to control-flow transition statement such as break , continue ,
and throw . We therefore use line coverage instrumentation to get
all the executed lines in between, and hence the control flow.

After the code instrumentation, we obtain a pair of instrumented
programs that are executed under given tests. As briefly discussed
earlier in Section 3, we employ dynamic granularity tracing to
minimize spurious locations being reported to the user. Our pro-
posed algorithm for such dynamic granularity tracing and trace
comparison is shown in Algorithm 1. It performs multiple rounds
of tracing on instrumented programs, with each round increasing
the tracing granularity. Line coverage information is small and is
always turned on.

The input to Algorithm 1 includes the instrumented source pro-
gram 𝑃𝑠 , the instrumented translated program 𝑃𝑡 , the source map
𝑀 , static metadata 𝑇 for selectively turning tracepoints on or off,
and the maximum tracing level 𝐿𝑚𝑎𝑥 .

Specifically, in the very first round, the algorithm starts at tracing
level 1 (𝐿 = 1) with all the lines marked “suspicious”, i.e., the set of
suspicious lines𝑋𝑠 and𝑋𝑡 are initialized to all lines in the programs
(lines 2-3 in Algorithm 1). In this round, all the tracepoints at level 1
are enabled for logging but tracepoints at higher levels are disabled
(checked in line 5). For example, this means all local variables at
function scope are traced in JavaScript. The tracing is performed by
running the instrumented program on unit tests and collecting the
logs. The enabled tracepoints in the program will record program
states to logs (line 6). The trace logs, represented by Γ𝑠 and Γ𝑡 , are



TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

sequences of log items where each log entry item consists of the
tracepoint index and values of local variables. The trace logs Γ𝑠
and Γ𝑡 will then be compared step by step. If no mismatch is found
in the traces, it implies that the programs behave the same thus
the algorithm halts. Otherwise, the algorithm will find the first
mismatching log item and its corresponding diverging tracepoint
(line 7). It then obtains the executed lines between the diverging
tracepoint and the previous tracepoint where the program states
have not diverged from the line coverage information (line 10).
Only those lines are now marked suspicious, therefore, the updated
𝑋𝑠 and 𝑋𝑡 are reduced. This finishes one round of tracing and the
algorithm goes on to perform the next round of tracing with an
increased tracing level 2 (line 15). In the round with tracing level 2,
all the tracepoints outside of the suspicious line set will be disabled.
For tracepoints that are still within the reduced suspicious lines
set, tracepoints up to level 2 will be enabled (line 5). The second
round of tracing can further reduce the set of suspicious lines with
more tracepoints concentrated around the unknown mistake. This
process repeats until the maximum tracing level is reached, and the
final sets of suspicious lines are returned as the result (line 16).

When deciding if the source and translated code diverge at one
tracepoint, we resort to the notion observational equivalence (up to
the given tests) rather than semantic equivalence. We log the data
types to their canonical forms and compare the canonical forms
instead of the original data types. The idea is to project various
data types into a minimum set of simplest data types. For example,
List , Array , Deque , and other similar data types can be mapped
to JSON array. int , float , and other numeric types can be mapped
to JSON number. This tracing and comparison process does lose
some information, but it reconciles the difference in data types
across the source and target languages. While our tracing and value
comparator implementation has been sufficient for our reported
evaluation, it can be improved in future versions of TransMap.

5 IMPLEMENTATION
TransMap uses Codex as the neural code generator with the trans-
lation prompt shown in Figure 5. It starts with a fixed pair of mini-
malistic code fragments that demonstrate the translation task. The
next part is the given Python source code that needs to be translated
(left-bottom). The neural code generator completes the prompt with
translated JavaScript code (right-bottom) as the output.

The source map generator queries Codex for the source map and
we use the standard greedy decoding with the temperature set to
0 and 𝑝 to 1. It parses the generated text from Codex to compute
atomic pieces. It assumes that every line in the translation belongs
to some atomic piece and that the atomic pieces order the line
numbers in Python source and the JavaScript target in the same
order, with no discontinued atomic piece that is mixed with other
atomic pieces. This assumption enables simpler implementation
for our trace comparator and empirically it is satisfied most of the
time. The source map generator will abort if it cannot output a
valid source map. When updated programs (𝑆,𝑇 ) are processed,
only few lines are updated and so the updated source map can be
computed from cached source maps without querying Codex.

The trace comparator is implemented as source-level code instru-
mentation and offline analysis on trace files. The instrumentation

Figure 5: One-shot prompt for the neural code generator to
translate Python code into JavaScript code.

requires simple static analysis to get the list of local variables at
the position of each tracepoint. This is implemented with the help
of tree-sitter [50] AST queries and Python’s built-in support for
reflection at runtime (e.g. local() ).

TransMap reports the suspicious lines as given by Algorithm 7
and the variables with diverging values. The trace implementa-
tion includes runtime type information which is considered during
value comparisons2. When a trace mismatch is found, TransMap
provides both the suspicious variable and the “Jump-to-definition”
utility to the user. The user can fix the variable type declaration, its
type definition, or its use at the suspicious lines.

In total, TransMap is implemented in around 5𝑘 lines of Python
and JavaScript and another 5𝑘 lines of UI code for easier interaction.

6 EVALUATION
We evaluate TransMap for identifying mistakes in neural code
translation from Python to JavaScript. Our evaluation focuses on
the following four aspects:

(1) Motivation (Section 6.1): What kinds of translation mis-
takes does Codex make for which TransMap is of value?

(2) Effectiveness (Section 6.2): How effective is TransMap at
pinpointing translation mistakes?

(3) Case Study (Section 6.3) How much human effort does it
take to translate real-world programs using TransMap?

(4) User Study (Section 6.4) How helpful is TransMap for
users to pinpoint and fix the translation mistakes?

Micro-benchmarks for Pinpointing Neural Translation Mis-
takes. Pinpointing mistakes in neural code translation across lan-
guages is relatively new. We thus created a set of benchmarks that
extends those used in recent works [52]. Each sample program in
the micro-benchmarks contains the following:
• source program,
• a neural translated program from Codex with mistakes,
• test cases for the source and translated code,
• a list of mistakes in the code with line locations and fixes,
• the fixed translated program that passes the tests.

2Similar types like array, queue, and list are clustered as the same “simple type” for
comparisons in our implementation.



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

We create ourmicro-benchmarks based on 3 popular benchmarks
on code related tasks: LeetCode Python-to-JS benchmarks (1067
programs) [52], GeeksForGeeks benchmarks (699 programs) [43],
and HumanEvalX benchmarks (164 programs) [10]. Taking the
LeetCode benchmarks as an example, the process to create our
micro-benchmarks is shown below. First, we query Codex to trans-
late all programs in the LeetCode benchmarks into JavaScript using
the translation prompt in Figure 5. The provided test cases for the
source programs are simple, thus we obtained their corresponding
versions for translated code using straightforward string substi-
tution. Next, we run the translated code on unit tests and collect
the failing programs. This gives us 424 programs. Then we manu-
ally check these failing programs and filter out those (132 of them)
where the translated code is either unfixable or not corresponding
to the source at all. We consider a program as unfixable if com-
pletely rewriting it or implementing non-existing functions and
data types used by the translation is necessary to make it pass the
tests. Further discussion on these is presented in Section 6.5. After
the filtering, we manually check the remaining 292 programs, pin-
point their mistakes, and write a fix for each mistake. In the end, we
validate 459 mistakes from 292 programs on LeetCode benchmarks.

Similarly, we collect 235 mistakes from 136 programs on Geeks-
ForGeeks benchmarks and 69 mistakes from 51 programs on Hu-
manEvalX benchmarks. In total, we have 479 programs and 763
mistakes with fixes (115 syntax mistakes and 648 semantic mis-
takes). The translated programs are about 17.53 lines on average
as shown in column 𝐴𝐿𝐶 𝑗𝑠 of Table 1 and the longest program has
66 lines. The detailed characteristics of the micro-benchmarks are
provided in the supplementary materials [2].
Evaluation Metrics. To evaluate the effectiveness of TransMap,
we check if TransMap can pinpoint the semantic mistakes in our
micro-benchmarks. For the program with more than one semantic
mistake, we generate its partially-fixed variant programs in which
only one semantic mistake exists. This gives us as many variant
programs as semantic errors in this program. We look at the suspi-
cious lines highlighted at the end. If the suspicious lines contain
the mistake, we count it as successful. We also compute the average
number of suspicious lines that the user needs to inspect, as well as
the average ratio between the suspicious lines and the total lines in
the program.
Baseline. The baseline approach is simply to run the given unit
tests without TransMap. If a runtime error appears, we check if
that line number is the location where the fix is needed. If not,
it is counted as a failure. Note that for hidden mistakes, where
program states differ but no runtime errors are thrown, the baseline
approach cannot pinpoint them.
System Specification. We run all experiments on a desktop with
32GB of RAM and an i7 9700 8-Core CPU. To query the Codex
model for generating translations and source maps, we directly use
OpenAI API without local computation [37].

6.1 Quantifying Mistakes in Codex Translations
It is useful to understand the kind of errors made by Codex before
we can quantify where TransMap provides most value. Figure 6
shows the distribution of all the 763 translation mistakes in all our

45.61%

0.52%
22.67%

16.12%

12.45%

2.62%

84.93%

15.07%

Different Result
Other Runtime Error
Runtime Reference Error
Runtime Type Error
Confused Syntax
Minor Syntax Mistake

Semantic Mistakes
Syntax Mistakes

Figure 6: Distribution of mistakes in our micro-benchmarks

micro-benchmarks. Among them, syntax mistakes and semantic
mistakes account for 15.07% (115) and 84.93% (648), respectively.

A syntax checker spots syntaxmistakes evenwithout TransMap.
Most syntaxmistakes (82.61%) are due to Codex confusing JavaScript
syntax with Python syntax and producing Python-like expressions
in JavaScript. For example, the expression [int(x)for x in y] is
wrongly translated into the expression [parseInt(x)for x in y] .
There is no list comprehension syntax support in JavaScript thus the
correct translation should be y.map(x => parseInt(x)) . These
mistakes are not minor lexical edits, but can often be resolved with
an online search of the error description [38]. A minority of the
syntax mistakes are due to minor errors (e.g., missing parentheses).
For example, Codex translates for loops for a, b in arr into
for (let a,b of arr){...} but misses a pair of square brack-
ets around a,b (i.e., for(let [a,b] of ... ).

Around half of the semantic mistakes (45.61% out of 84.93%)
cause no runtime errors but result in different results from their
corresponding Python source. For the other half of the semantic
mistakes, most of them cause either reference errors or type errors.
The detailed distributions of mistakes in each micro-benchmark
are shown in the supplementary materials [2].

Semantic mistakes can be more subtle and can result in runtime
errors (39.32% of all mistakes). We divide runtime errors caused
by semantic mistakes into three types: runtime reference error,
runtime type error, and other runtime errors. They account for
22.67%, 16.12%, 0.52% of all mistakes, respectively, as shown in
Figure 6. An example of runtime reference error is using undeclared
variables or non-existing functions. Misuse of API and operators
or accessing a numeric value as if it is an object will result in
runtime type errors. Occasionally, the translated program might
not terminate and exceed the maximum call stack. Most of such
mistakes that cause runtime errors can be fixed by changing the API
calls, operators, or adding variable declarations at the runtime error
location. However, the locations of 14.67% runtime errors (6.79% of
all semantic mistakes) do not match the correct fix locations.

The other 53.70% of the semanticmistakes (45.61% of all mistakes)
cause no runtime errors but make the translated code differ in
output of the unit tests from the source. This type of mistake can
be further divided into several sub-types:



TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Distributions of mistakes on micro-benchmarks and performance of TransMap compared to the baseline approach

Micro-Benchmarks Mistaken Prog. Mistakes Baseline TransMap
Count 𝐴𝐿𝐶 𝑗𝑠 Syntax Semantic 𝑆𝑠𝑒𝑚 𝑆𝑠𝑒𝑚 𝑆ℎ𝑖𝑑 𝑆𝑑𝑖 𝑓 𝐿𝑠𝑢𝑠 𝑅𝑠𝑢𝑠

Leetcode 292 20.26 86 (18.7%) 373 (81.3%) 42.09% 87.67% 82.41% 81.96% 1.31 7.23%
GeeksForGeeks 136 13.05 16 (6.8%) 219 (93.2%) 39.27% 88.58% 86.47% 88.50% 1.11 7.44%
HumanEvalX 51 11.49 13 (18.8%) 56 (81.2%) 23.21% 87.50% 88.37% 87.80% 1.18 10.90%
Total*/Average 479* 17.53 115* 648* 39.51% 87.96% 84.44% 84.77% 1.23 7.62%

• Semantic confusion, i.e., confusing similar APIs and data types.
Such as translating from int(x) into Math.floor(x) or Math.
trunc(x) (differentwhen x < 0), a[i] to a.at(i) or a.get(i) .

• Wrong assumptions about the JavaScript runtime and APIs.
Such as translating a,b = c.popleft() to a = c.shift()[0];
b = c.shift()[1]; (shift is not pure and will change c),
translate not arr to !arr (The equivalent expression should
be arr.length === 0 when arr is an array).
• Others, i.e., mistakes that seem to be difficult to cluster or catego-
rize. Such as missing a function call in the translation, assigning
absurd values (such as [[0], [0]] ) to variables, and introduc-
ing a temporary variable with the same name as a local variable.

6.79% of the semantic mistakes in our micro-benchmarks cause
runtime errors at locations different from the mistakes. 53.70% of
the semantic mistakes cause no runtime errors but give different
results. TransMap is aimed at pinpointing such hiddenmistakes.

6.2 Effectiveness of TransMap
We evaluate TransMap on the number of lines that the user has to
inspect to fix each mistake in our micro-benchmarks. If the lines
highlighted by TransMap contain the location to fix, the pinpoint-
ing is deemed successful and a failure otherwise. Our results on the
micro-benchmarks are shown in Table 1, where 𝑆𝑠𝑒𝑚 , 𝑆ℎ𝑖𝑑 , 𝑆𝑑𝑖 𝑓
represent the ratio of successfully pinpointed mistakes to the total
semantic mistakes, hidden mistakes, and mistakes that cause differ-
ent output results from the source respectively. The quantities 𝐿𝑠𝑢𝑠
and 𝑅𝑠𝑢𝑠 represent the number of highlighted suspicious lines and
its ratio to the program size, averaged over the semantic mistakes
successfully pinpointed by TransMap.

Among the set of semantic mistakes, TransMap can pinpoint
87.96% of them successfully. In contrast, the baseline successfully
pinpoints only 39.51% of the semantic mistakes. Thus, TransMap
significantly improves over the baseline. Its success ratio can achieve
95% satisfaction rate among developers according to this work [29].
The suspicious code lines 𝐿𝑠𝑢𝑠 by TransMap are 1.23 lines, which
is 7.62% of the program code lines on average. This means that the
user often only needs to focus on 1-2 lines to understand the mis-
take and to fix it. It shows that TransMap can efficiently pinpoint
the semantic mistakes for short code fragments with high accuracy.

TransMap performs well on the hidden mistakes that the base-
line approach cannot find at all. As shown in 𝑆ℎ𝑖𝑑 column of Table 1,
82.41%- 88.37% of hidden mistakes can be pinpointed among three
micro-benchmarks. For semantic mistakes that do not cause any
runtime errors but different results from the source code,TransMap
is able to successfully diagnose 84.77% mistakes (𝑆𝑑𝑖 𝑓 ) on average.

We also look at the quality of the generated source map specifi-
cally. We find that 93.8% of the generated source maps are correct.
Failing cases are discussed in Section 6.5.

87.96% of semantic mistakes in our micro-benchmarks are pin-
pointed successfully by TransMap, compared to 39.51% by base-
line. The user inspects only 1.23 lines on average per mistake.

6.3 Case Studies
How much does TransMap help in translating larger real-world
Python programs to JavaScript? We report on the qualitative expe-
rience of translating 5 Python libraries using TransMap as an aid.
Their LoC (excluding tests) and the number of semantic mistakes
are shown in Table 2. We select those modules because they are
standalone, have no external dependencies, and their code can be
segmented and translated function-by-function without significant
loss of context. We had no apriori familiarity with these libraries.

We explain our methodology in detail using the first module
(strsimpy) as an example. The strsimpy library implements many
string functions to compute similarity and distance measures. It also
comes with unit tests. It has 800+ stars on GitHub and around 20𝑘
downloads per week3. It contains around 1k lines of code distributed
in 35 Python files and has no third-party dependencies.

Before translating this Python library to JavaScript, we first
merge the related Python program files into standalone programs
and convert unit tests to JavaScript. More specifically, we manually
merge the 35 files with their unit tests into 5 self-contained program
files according to their dependency relation. We first convert unit
tests in Python into JavaScript using Codex and manually post-
process to ensure the tests are translated correctly. This is fairly easy
since the unit tests are mostly function calls and assertions that are
straightforward to convert. It is worth noting that all these manual
efforts on merging files and converting unit tests can be further
reduced with sufficient engineering when integrating TransMap
into modern IDEs or in other build environments.

Each of the 5 self-contained program file is around 200 lines. If we
translate one file and create its source map in one attempt, it would
exceed the token limit of the Codex API. We observe that 50 is a
feasible line number of the source code to be translated and mapped
in one query. Thus, we split the code into segments of around 50
lines while preserving the boundaries of classes and functions. Then,
each segment is translated with Codex, source-mapped separately
by TransMap, and then merged back after finishing all segments.
These steps are fully amenable to complete automation.

3https://github.com/luozhouyang/python-string-similarity. The download statistics
were obtained from https://pypistats.org/packages/strsimpy on 28 January 2023.

https://github.com/luozhouyang/python-string-similarity
https://pypistats.org/packages/strsimpy


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

Figure 7: An example report of a hidden semantic mistake
pinpointed by TransMap. It contains the mistake location
and variables with differing values in the source and the
translated code.

We then run programs and fix the syntax mistakes caught by
syntax checkers so that only semantic mistakes are remaining. Af-
ter that, we start TransMap to work with the user iteratively to
pinpoint (by TransMap) and fix (by the user) semantic mistakes fol-
lowing the workflow shown in Figure 3. In each round, TransMap
outputs the suspicious lines that contain the first semantic mistake
found in the translated code, together with the detailed informa-
tion of the diverging tracepoint (e.g., the mismatching between the
expected value in the source and the actual value in the translated
code of variables), and the corresponding source lines in Python
according to the source map. For example, Figure 7 shows the infor-
mation reported by TransMap on one of the semantic mistakes in
this case study. TransMap pinpoints the mistake at the JavaScript
code line 194 with the corresponding Python code line 167. Besides,
it gives the local variable values in two code and highlights the
inequivalent variable offset_arr . With this report, the human
user is expected to figure out that the mistake is caused by the
semantic confusion of pop(...) in JavaScript and provide the fix:
Line 194 in JavaScript should be offset_arr.splice(i, 1) that
removes the 𝑖-th element from offset_arr .

TransMap correctly pinpoints the location of all of the 13 hidden
mistakes in the translated code automatically. With those mistakes
highlighted from TransMap, one of the authors of this work with
no apriori experience with the library, fixed all of them in about 1
hour. The final JavaScript translation passes all the given tests.

In addition to strsimpy, results of 4 more case studies are shown
in Table 2. TransMap correctly pinpoints 128 of the 130 hidden mis-
takes and has 12 false positives (FPs). FPs are due to type differences
of some variables. The user can disable tracing them to continue
debugging. The supplementary material gives more details.

TransMap pinpoints 128 of the 130 hidden mistakes in transla-
tions of 5 Python libraries, with 12 false positives.

Table 2: Python libraries for case studies: LoCmeans Lines of
Code, Sem. M. means the number of semantic mistakes, #Hid.
means the number of hidden mistakes, #TP and #FP mean
true positives and false positives of TransMap respectively.

Module LoC Sem. M. #Hid. / #TP / #FP
strsimpy 926 42 13 / 13 / 0
mathgen 791 100 95 / 95 / 5
colorsys 121 3 3 / 3 / 0
heapq 184 15 9 / 8 / 3
html 776 25 10 / 9 / 4

Table 3: The number of unfinished tasks and themedian time
for users to pinpoint hidden mistakes and finish tasks

Group Short Program Long Program
𝑁unfin𝑇𝑠𝑝𝑜𝑡 𝑇𝑡𝑜𝑡𝑎𝑙 𝑇𝑠𝑝𝑜𝑡 𝑇𝑡𝑜𝑡𝑎𝑙

𝐺𝑐 452s 739s 1020s 1255s 7
𝐺𝑒 60s 235s 286s 365s 2

6.4 User Study
We conduct a preliminary user study on the usefulness ofTransMap
in the debugging task of pinpointing and fixing hidden mistakes.
Evaluation metrics are the time users spend pinpointing and fixing
bugs, and the number of unfinished tasks.We invite 24 computer sci-
ence graduates4, who have no prior familiarity with TransMap, and
randomly divide them into a control group𝐺𝑐 (without TransMap)
and an experimental group𝐺𝑒 (with TransMap). Two groups are
given the same set of programs consisting of randomly sampled
8 short programs (< 20 lines) from our micro-benchmarks and 4
long code segments (> 150 lines) from strsimpy library. Each par-
ticipant is randomly assigned 3 debugging tasks: 2 short programs
and 1 long program, and we make sure every program is assigned
to three users per group. Each program contains one mistake and
only a one-line fix is needed to pass tests. If they spend more than
15 minutes, they have the option to abandon that program, which
would be regarded as an unfinished task. The results are presented
in Table 3. The 𝑁unfin column shows the number of unfinished
tasks out of 36 tasks per group. After removing these samples, the
median of the time to confirm the line of mistake and the median of
the total time to finish this task is presented as𝑇𝑠𝑝𝑜𝑡 and𝑇𝑡𝑜𝑡𝑎𝑙 . We
can see that the median time to pinpoint hidden mistakes reduces
87% on short code and 72% on long code when using TransMap
compared to using the VS Code debugger. Moreover, the total time
to pinpoint and fix mistakes also reduces by 68% on short code and
71% on long code. Additional results of the user study are presented
in the supplementary material [2].

6.5 Discussion
Unfixable Cases When Creating Micro-benchmarks. We
removed unfixable translations due to a known issue referred to
as hallucination in large language models [24, 31]. Such unfixable
translations typically have a heavy reliance on non-existent APIs,
data types, and operators lacking JavaScript equivalents. Although
4All participants reported having at least some familiarity with Python or JavaScript.

https://github.com/luozhouyang/python-string-similarity
https://github.com/lukew3/mathgenerator
https://docs.python.org/3/library/colorsys.html
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/html.parser.html


TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Accuracy of source mapping and breakdown of fail-
ures under different styles of the translated code

Scenario Accuracy Failure Breakdown
NEQ. OOB. DISO.

Fixed Translation 94.5% 2.1% 2.1% 1.4%
Buggy Translation 92.5% 3.8% 1.7% 2.1%
Added Comments 93.8% 1.4% 2.7% 2.1%
Renamed Variables 91.4% 2.1% 5.8% 0.7%
Multiple Functions 89.4% 4.8% 3.1% 2.7%

TransMap can identify these mistakes, fixing them is complicated,
and we found it generally simpler to entirely rewrite the translation.
TransMap cannot help much in such instances, examples of which
are provided in the supplementary material [2].
The Types of Failures in Source Mapping. In our evaluation of
the micro-benchmarks, 6.2% of the source mapping are counted as
failures. There are three types of failures:
• Code Not Equal (NEQ): 3.4%. Some code lines in the mapping
output are different from the input (i.e., Part C and B in Fig. 4).
• Out of Bound (OOB): 1.5%. Some annotated statement numbers
in the translation (JavaScript) do not exist in the source (Python).
• Disorder (DISO): 1.2%. Some statements are mapped wrongly.
We count the first two types as invalid and the third type as inaccu-
rate. Most of the failure cases can be fixed with manual modifica-
tions to several lines of the mapping.
Robustness of Source Mapping. To assess how varying styles of
the translated code affect the performance of source mapping, we
conduct additional experiments5 on the same LeetCode programs
from our evaluation. We introduced changes to the fixed JavaScript
translations in various ways: comment insertion, variable renaming,
and function concatenation. Table 4 shows that these transforma-
tions degrade the accuracy of source mapping by about 1-5%. The
supplementary material [2] has a more detailed discussion.
Possible Limitations of In-context Learning using LLMs. LLMs
can typically generalize from a few examples [19, 60], yet the con-
text window restricts the complexity of tasks that they contextualize.
Further, their reasoning capability is token-limited, leading to a
subpar performance on some few-shot reasoning tasks as indicated
by Brown et al. However, methods like chain-of-thoughts [56] can
be used to enhance outcomes with increased output length.
TransMap vs. Conventional Code Alignment Approaches.
To our knowledge, most of the conventional approaches to code
and trace alignment [41, 54, 61] focus on different versions of the
code in the same language. We observe neural code translation can
make unpredictable transformations, such as breaking, merging,
reordering statements, transforming loop structure, and so on. Thus,
an LLM-based self-explanatory approach is potentially easier to
implement andmore accurate for code translations by the LLM itself.
However, the approach has some pitfalls, including noisy output and
the limiting context length inherent in LLMs. Enhancements could
potentially come from imposing output restrictions on language
models [40] and expanding the context window [47].

5We used ChatGPT 3.5 [35] instead of Codex for this experiment and 4 case studies
(except strsimpy) since Codex became publicly unavailable to us.

7 RELATEDWORK
This is the first work on automatically pinpointing mistakes for
neural code generator outputs when attempting to translate across
programming languages. This problem is related to non-neural
code translation and fault localization in different ways.
Code Translation. Traditional compilers and transpilation tools
are the most common approaches used today. The readability of
the generated code is often limited and the effort to write compilers
is significant. To address these issues, a recent line of work uses
natural language processing tools for code generation and trans-
lation. TransCoder [43] proposed unsupervised code translation
using back-translation. Szafraniec et al. proposed to train neural
decompilers to translate between languages that can be compiled
to LLVM IR. Larger state-of-the-art models such as Codex [9] are
also trained in an unsupervised manner and can translate between
multiple languages. However, all of these approaches suffer from
noisy outputs with mistakes. Our work on TransMap is motivated
from these observations and aims to augment existing neural code
translators. Another line of work with a longer history is to use sym-
bolic approaches for code translation. TXL [11] is a domain-specific
language for writing code translators. A more recent work intro-
duces DuoGlot [52], a system that combines rule-based translation
with rule synthesis from user-provided examples. This approach
has the benefits of being predictable, but generally requires human
effort and expertise to write rules. TransMap is an incomparable
alternative: it directs the user to a fix in the translated program,
rather than general transformation rules across languages.
Fault Localization. Fault location is a rich area of prior research
which also pinpoints errors in buggy programs given tests [59]. The
key difference from these works is that tests in our problem setup
run on two programs in different languages. The novel challenge is
therefore in mapping execution semantics between the programs
especially after they have undergone a black-box neural translation.
TransMap introduces generic capabilities, such as source maps,
that can act as an important aid to adapt existing fault localization
techniques to neural code generators in the future. Prior techniques
have focused on different aspects: improving statistical scoring
functions [3, 27], ranking mechanisms [5, 44], better reasoning
under mutations [62], increase the quality of test suites [39, 48],
improving trace analysis [12], symbolic reasoning for root cause
analysis [8, 16, 28, 41], and more.

8 CONCLUSION
We provide the first systematic approach to pinpointing errors in
code translated from one program language to another by modern
neural translators. Our TransMap identifies mistakes with high
fidelity in short JavaScript fragments translated from Python.

9 DATA AVAILABILITY
Our code and datasets are available on Zenodo [53]. The latest
version and supplementary materials [2] can be found on Github.

ACKNOWLEDGMENTS
We thank the anonymous reviewers. This research is supported
by grants given by the Ministry of Education in Singapore: Tier-2
grant MOE-T2EP20220-0014 and Tier-1 grant T1 251RES2023.

https://doi.org/10.5281/zenodo.8283023
https://github.com/HALOCORE/TransMap


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena

REFERENCES
[1] 2002. Chapter 15 - Microsoft Says JUMP—Java User Migration Path. In C# For Java

Programmers, Brian Bagnall, Philip Chen, Stephen Goldberg, Jeremy Fairdoth,
and Harold Cabrera (Eds.). https://doi.org/10.1016/B978-193183654-8/50019-0

[2] 2023. Supplementary Material. https://github.com/HALOCORE/TransMap
[3] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of

spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION (TAICPART-MUTATION 2007). IEEE,
89–98. https://doi.org/10.1109/TAIC.PART.2007.13

[4] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (apr 2023), 27 pages. https://doi.org/10.
1145/3586030

[5] Tim Blazytko, Moritz Schlögel, Cornelius Aschermann, Ali Abbasi, Joel Frank,
SimonWörner, and Thorsten Holz. 2020. AURORA: Statistical Crash Analysis for
Automated Root Cause Explanation. In Proceedings of the 29th USENIX Conference
on Security Symposium (SEC’20). USENIX Association, USA, Article 14, 18 pages.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[7] Stephanie C. Y. Chan, Adam Santoro, Andrew K. Lampinen, Jane X. Wang, Aa-
ditya Singh, Pierre H. Richemond, Jay McClelland, and Felix Hill. 2022. Data
Distributional Properties Drive Emergent In-Context Learning in Transformers.
http://arxiv.org/abs/2205.05055 arXiv:2205.05055 [cs].

[8] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. Angelic
Debugging. In Proceedings of the 33rd International Conference on Software Engi-
neering (Waikiki, Honolulu, HI, USA) (ICSE ’11). Association for Computing Ma-
chinery, New York, NY, USA, 121–130. https://doi.org/10.1145/1985793.1985811

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[10] CodeGeeX. 2023. HumanEval-X: A new benchmark for Multilingual Program
Synthesis. https://github.com/THUDM/CodeGeeX.

[11] James R Cordy. 2006. The TXL source transformation language. Science of
Computer Programming 61, 3 (2006), 190–210. https://doi.org/10.1016/j.scico.
2006.04.002

[12] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upamanyu Sharma, Ruoyu
Wang, and Insu Yun. 2018. REPT: Reverse Debugging of Failures in Deployed
Software. In Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation (Carlsbad, CA, USA) (OSDI’18). USENIX Association,
USA, 17–32.

[13] Joe Davison, Joshua Feldman, and Alexander Rush. 2019. Commonsense Knowl-
edge Mining from Pretrained Models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Associa-
tion for Computational Linguistics, Hong Kong, China, 1173–1178. https:
//doi.org/10.18653/v1/D19-1109

[14] Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin
Wenliang, Elliot Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and
Pedro A Ortega. 2023. Neural Networks and the Chomsky Hierarchy. https:
//openreview.net/forum?id=WbxHAzkeQcn

[15] doocs. 2023. LeetCode solutions in any programming language. https://github.
com/doocs/leetcode.

[16] Evren Ermis, Martin Schäf, and Thomas Wies. 2012. Error invariants. In FM 2012:
Formal Methods: 18th International Symposium, Paris, France, August 27-31, 2012.
Proceedings 18. Springer, 187–201. https://doi.org/10.1007/978-3-642-32759-9_17

[17] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan.
2023. Automated Repair of Programs from Large Language Models. In Proceedings
of the 45th International Conference on Software Engineering (Melbourne, Victoria,
Australia) (ICSE ’23). IEEE Press, 1469–1481. https://doi.org/10.1109/ICSE48619.
2023.00128

[18] Xiang Gao, Yannic Noller, and Abhik Roychoudhury. 2022. Program Repair. arXiv
preprint arXiv:2211.12787 (2022). https://doi.org/10.48550/arXiv.2211.12787

[19] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. 2022. What
can transformers learn in-context? a case study of simple function classes. arXiv
preprint arXiv:2208.01066 (2022). https://doi.org/10.48550/arXiv.2208.01066

[20] OpenAI Github. 2023. GitHub Copilot · Your AI pair programmer. https://github.
com/features/copilot/.

[21] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, California,
USA) (AAAI’17). AAAI Press, 1345–1351.

[22] Anna Irrera. 2017. Banks scramble to fix old systems as IT ’cowboys’ ride into
sunset. https://www.reuters.com/article/us-usa-banks-cobol-idUSKBN17C0D8.

[23] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. 2021. Jigsaw: Large Lan-
guage Models meet Program Synthesis. http://arxiv.org/abs/2112.02969
arXiv:2112.02969 [cs].

[24] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of Hallucination in
Natural Language Generation. ACM Comput. Surv. 55, 12, Article 248 (mar 2023),
38 pages. https://doi.org/10.1145/3571730

[25] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020.
How Can We Know What Language Models Know? Transactions
of the Association for Computational Linguistics 8 (07 2020), 423–438.
https://doi.org/10.1162/tacl_a_00324 arXiv:https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf

[26] Wei Jin and Alessandro Orso. 2013. F3: Fault Localization for Field Failures. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis
(Lugano, Switzerland) (ISSTA 2013). Association for Computing Machinery, New
York, NY, USA, 213–223. https://doi.org/10.1145/2483760.2483763

[27] James Jones, Mary Harrold, and John Stasko. 2002. Visualization of test informa-
tion to assist fault localization. Proceedings - International Conference on Software
Engineering, 467– 477. https://doi.org/10.1145/581339.581397

[28] Manu Jose and Rupak Majumdar. 2011. Cause Clue Clauses: Error Localization
Using Maximum Satisfiability. SIGPLAN Not. 46, 6 (jun 2011), 437–446. https:
//doi.org/10.1145/1993316.1993550

[29] Pavneet Singh Kochhar, Xin Xia, David Lo, and Shanping Li. 2016. Practitioners’
Expectations on Automated Fault Localization. In Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis (Saarbrücken, Germany)
(ISSTA 2016). Association for ComputingMachinery, New York, NY, USA, 165–176.
https://doi.org/10.1145/2931037.2931051

[30] Guillaume Lample,Myle Ott, Alexis Conneau, Ludovic Denoyer, andMarc’Aurelio
Ranzato. 2018. Phrase-Based & Neural Unsupervised Machine Translation. ,
5039–5049 pages. https://doi.org/10.18653/v1/D18-1549

[31] Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen.
2023. HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large
Language Models. arXiv e-prints (2023), arXiv–2305. https://doi.org/10.48550/
arXiv.2305.11747

[32] Microsoft. 2023. Visual Studio Code. https://code.visualstudio.com/.
[33] mozilla. 2023. source-map: Consume and generate source maps. https://github.

com/mozilla/source-map
[34] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. SemFix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). 772–781. https://doi.org/10.1109/
ICSE.2013.6606623

[35] OpenAI. 2023. ChatGPT. https://openai.com/blog/chatgpt.
[36] OpenAI. 2023. Code completion - OpenAI API. https://platform.openai.com/

docs/guides/code/best-practices.
[37] OpenAI. 2023. OpenAI API. https://openai.com/api/.
[38] Stack Overflow. 2023. Does JavaScript support array/list comprehensions like

Python? https://stackoverflow.com/questions/31353213/does-javascript-support-
array-list-comprehensions-like-python.

[39] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE ’07). IEEE Computer Society,
USA, 75–84. https://doi.org/10.1109/ICSE.2007.37

[40] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable code gener-
ation from pre-trained language models. http://arxiv.org/abs/2201.11227
arXiv:2201.11227 [cs].

[41] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. 2012. DAR-
WIN: An Approach to Debugging Evolving Programs. ACM Trans. Softw. Eng.
Methodol. 21, 3, Article 19 (jul 2012), 29 pages. https://doi.org/10.1145/2211616.
2211622

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21, 1, Article 140 (jan 2020), 67 pages.

[43] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume
Lample. 2020. Unsupervised Translation of Programming Languages. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 20601–20611. https://proceedings.neurips.cc/paper_files/paper/2020/file/
ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf

[44] Shiqi Shen, Aashish Kolluri, Zhen Dong, Prateek Saxena, and Abhik Roychoud-
hury. 2021. Localizing Vulnerabilities Statistically From One Exploit. In Proceed-
ings of the 2021 ACM Asia Conference on Computer and Communications Security
(Virtual Event, Hong Kong) (ASIA CCS ’21). Association for Computing Machin-
ery, New York, NY, USA, 537–549. https://doi.org/10.1145/3433210.3437528

[45] Richard Shin and Benjamin Van Durme. 2022. Few-Shot Semantic Parsing with
Language Models Trained on Code. In Proceedings of the 2022 Conference of the

https://doi.org/10.1016/B978-193183654-8/50019-0
https://github.com/HALOCORE/TransMap
https://doi.org/10.1109/TAIC.PART.2007.13
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3586030
http://arxiv.org/abs/2205.05055
https://doi.org/10.1145/1985793.1985811
https://github.com/THUDM/CodeGeeX
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://github.com/doocs/leetcode
https://github.com/doocs/leetcode
https://doi.org/10.1007/978-3-642-32759-9_17
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.48550/arXiv.2211.12787
https://doi.org/10.48550/arXiv.2208.01066
https://github.com/features/copilot/
https://github.com/features/copilot/
https://www.reuters.com/article/us-usa-banks-cobol-idUSKBN17C0D8
http://arxiv.org/abs/2112.02969
https://doi.org/10.1145/3571730
https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://arxiv.org/abs/https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00324/1923867/tacl_a_00324.pdf
https://doi.org/10.1145/2483760.2483763
https://doi.org/10.1145/581339.581397
https://doi.org/10.1145/1993316.1993550
https://doi.org/10.1145/1993316.1993550
https://doi.org/10.1145/2931037.2931051
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.48550/arXiv.2305.11747
https://doi.org/10.48550/arXiv.2305.11747
https://code.visualstudio.com/
https://github.com/mozilla/source-map
https://github.com/mozilla/source-map
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1109/ICSE.2013.6606623
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/guides/code/best-practices
https://platform.openai.com/docs/guides/code/best-practices
https://openai.com/api/
https://stackoverflow.com/questions/31353213/does-javascript-support-array-list-comprehensions-like-python
https://stackoverflow.com/questions/31353213/does-javascript-support-array-list-comprehensions-like-python
https://doi.org/10.1109/ICSE.2007.37
http://arxiv.org/abs/2201.11227
https://doi.org/10.1145/2211616.2211622
https://doi.org/10.1145/2211616.2211622
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://doi.org/10.1145/3433210.3437528


TransMap: Pinpointing Mistakes in Neural Code Translation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. Association for Computational Linguistics, Seattle, United
States, 5417–5425. https://doi.org/10.18653/v1/2022.naacl-main.396

[46] Marc Szafraniec, Baptiste Roziere, Hugh Leather, Francois Charton, Patrick La-
batut, and Gabriel Synnaeve. 2022. Code Translation with Compiler Representa-
tions. (July 2022). http://arxiv.org/abs/2207.03578 arXiv:2207.03578 [cs].

[47] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. 2022. Efficient
Transformers: A Survey. 55, 6, Article 109 (dec 2022), 28 pages. https://doi.org/
10.1145/3530811

[48] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation
for. NET. In Tests and Proofs: Second International Conference, TAP 2008, Prato, Italy,
April 9-11, 2008. Proceedings 2. Springer, 134–153. https://doi.org/10.1007/978-3-
540-79124-9_10

[49] Sindhu Tipirneni, Ming Zhu, and Chandan K Reddy. 2022. StructCoder: Structure-
Aware Transformer for Code Generation. arXiv preprint arXiv:2206.05239 (2022).
https://doi.org/10.48550/arXiv.2206.05239

[50] tree sitter. 2023. Tree-sitter | Introduction. https://tree-sitter.github.io/tree-sitter/.
[51] typescriptlang. 2023. TSConfig Reference: Source Map. https://www.

typescriptlang.org/tsconfig#sourceMap
[52] Bo Wang, Aashish Kolluri, Ivica Nikolić, Teodora Baluta, and Prateek Saxena.

2023. User-Customizable Transpilation of Scripting Languages. 7, OOPSLA1,
Article 82 (apr 2023), 29 pages. https://doi.org/10.1145/3586034

[53] Bo Wang, Ruishi Li, Mingkai Li, and Prateek Saxena. 2023. TransMap: Pinpointing
Mistakes in Neural Code Translation (Artifact). https://doi.org/10.5281/zenodo.
8283633

[54] Haijun Wang, Yun Lin, Zijiang Yang, Jun Sun, Yang Liu, Jinsong Dong, Qinghua
Zheng, and Ting Liu. 2021. Explaining Regressions via Alignment Slicing and
Mending. IEEE Transactions on Software Engineering 47, 11 (2021), 2421–2437.
https://doi.org/10.1109/TSE.2019.2949568

[55] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational

Linguistics, Online and Punta Cana, Dominican Republic, 8696–8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022). https://doi.org/10.
48550/arXiv.2201.11903

[57] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proceedings of the
31st International Conference on Software Engineering (ICSE ’09). IEEE Computer
Society, USA, 364–374. https://doi.org/10.1109/ICSE.2009.5070536

[58] Sean Welleck, Ilia Kulikov, Jaedeok Kim, Richard Yuanzhe Pang, and Kyunghyun
Cho. 2020. Consistency of a Recurrent Language Model With Respect to Incom-
plete Decoding. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguistics,
Online, 5553–5568. https://doi.org/10.18653/v1/2020.emnlp-main.448

[59] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740. https://doi.org/10.1109/TSE.2016.2521368

[60] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2022. An
Explanation of In-context Learning as Implicit Bayesian Inference. http://arxiv.
org/abs/2111.02080 arXiv:2111.02080 [cs].

[61] Bin Xin, William N. Sumner, and Xiangyu Zhang. 2008. Efficient Program
Execution Indexing. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI
’08). Association for Computing Machinery, New York, NY, USA, 238–248.
https://doi.org/10.1145/1375581.1375611

[62] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Pruning Dynamic Slices
with Confidence. SIGPLAN Not. 41, 6 (jun 2006), 169–180. https://doi.org/10.
1145/1133255.1134002

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.18653/v1/2022.naacl-main.396
http://arxiv.org/abs/2207.03578
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.48550/arXiv.2206.05239
https://tree-sitter.github.io/tree-sitter/
https://www.typescriptlang.org/tsconfig#sourceMap
https://www.typescriptlang.org/tsconfig#sourceMap
https://doi.org/10.1145/3586034
https://doi.org/10.5281/zenodo.8283633
https://doi.org/10.5281/zenodo.8283633
https://doi.org/10.1109/TSE.2019.2949568
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.1109/ICSE.2009.5070536
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://doi.org/10.1109/TSE.2016.2521368
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080
https://doi.org/10.1145/1375581.1375611
https://doi.org/10.1145/1133255.1134002
https://doi.org/10.1145/1133255.1134002

	Abstract
	1 Introduction
	2 Problem Overview
	2.1 Motivating Example
	2.2 Problem Setup and Challenges

	3 TransMap: Overview
	4 TransMap: Components
	4.1 Source Map Generator
	4.2 Trace Comparator

	5 Implementation
	6 Evaluation
	6.1 Quantifying Mistakes in Codex Translations
	6.2 Effectiveness of TransMap
	6.3 Case Studies
	6.4 User Study
	6.5 Discussion

	7 Related Work
	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

